Copied to
clipboard

G = C23.29C42order 128 = 27

11st non-split extension by C23 of C42 acting via C42/C2xC4=C2

p-group, metabelian, nilpotent (class 2), monomial

Aliases: C23.29C42, (C22xC8):10C4, (C23xC8).2C2, (C2xC4).63C42, C24.92(C2xC4), (C22xC4).84Q8, C23.56(C4:C4), (C2xM4(2)):10C4, (C22xC4).750D4, (C2xC42).1C22, C22.19(C8oD4), C22.46(C2xC42), C23.246(C22xC4), (C23xC4).665C22, (C22xC8).371C22, (C22xM4(2)).7C2, C2.10(C8o2M4(2)), C23.113(C22:C4), C4.12(C2.C42), C22.7C42:34C2, (C22xC4).1599C23, C22.8(C2.C42), C2.1(C42.6C22), C4.71(C2xC4:C4), (C2xC4:C4).44C4, (C2xC8).126(C2xC4), C22.51(C2xC4:C4), (C2xC4).328(C2xQ8), (C2xC4).118(C4:C4), (C2xC4).1490(C2xD4), (C2xC22:C4).19C4, C4.101(C2xC22:C4), (C2xC42:C2).3C2, (C22xC4).104(C2xC4), (C2xC4).589(C22xC4), C2.6(C2xC2.C42), (C2xC4).250(C22:C4), C2.1((C22xC8):C2), C22.102(C2xC22:C4), SmallGroup(128,461)

Series: Derived Chief Lower central Upper central Jennings

C1C22 — C23.29C42
C1C2C22C2xC4C22xC4C23xC4C2xC42:C2 — C23.29C42
C1C22 — C23.29C42
C1C22xC4 — C23.29C42
C1C2C2C22xC4 — C23.29C42

Generators and relations for C23.29C42
 G = < a,b,c,d,e | a2=b2=c2=e4=1, d4=c, ab=ba, eae-1=ac=ca, ad=da, bc=cb, ede-1=bd=db, be=eb, cd=dc, ce=ec >

Subgroups: 308 in 208 conjugacy classes, 116 normal (24 characteristic)
C1, C2, C2, C2, C4, C4, C4, C22, C22, C22, C8, C2xC4, C2xC4, C2xC4, C23, C23, C23, C42, C22:C4, C4:C4, C2xC8, C2xC8, M4(2), C22xC4, C22xC4, C24, C2xC42, C2xC22:C4, C2xC4:C4, C42:C2, C22xC8, C22xC8, C2xM4(2), C2xM4(2), C23xC4, C22.7C42, C2xC42:C2, C23xC8, C22xM4(2), C23.29C42
Quotients: C1, C2, C4, C22, C2xC4, D4, Q8, C23, C42, C22:C4, C4:C4, C22xC4, C2xD4, C2xQ8, C2.C42, C2xC42, C2xC22:C4, C2xC4:C4, C8oD4, C2xC2.C42, C8o2M4(2), (C22xC8):C2, C42.6C22, C23.29C42

Smallest permutation representation of C23.29C42
On 64 points
Generators in S64
(1 55)(2 56)(3 49)(4 50)(5 51)(6 52)(7 53)(8 54)(9 60)(10 61)(11 62)(12 63)(13 64)(14 57)(15 58)(16 59)(17 31)(18 32)(19 25)(20 26)(21 27)(22 28)(23 29)(24 30)(33 45)(34 46)(35 47)(36 48)(37 41)(38 42)(39 43)(40 44)
(1 17)(2 18)(3 19)(4 20)(5 21)(6 22)(7 23)(8 24)(9 46)(10 47)(11 48)(12 41)(13 42)(14 43)(15 44)(16 45)(25 49)(26 50)(27 51)(28 52)(29 53)(30 54)(31 55)(32 56)(33 59)(34 60)(35 61)(36 62)(37 63)(38 64)(39 57)(40 58)
(1 5)(2 6)(3 7)(4 8)(9 13)(10 14)(11 15)(12 16)(17 21)(18 22)(19 23)(20 24)(25 29)(26 30)(27 31)(28 32)(33 37)(34 38)(35 39)(36 40)(41 45)(42 46)(43 47)(44 48)(49 53)(50 54)(51 55)(52 56)(57 61)(58 62)(59 63)(60 64)
(1 2 3 4 5 6 7 8)(9 10 11 12 13 14 15 16)(17 18 19 20 21 22 23 24)(25 26 27 28 29 30 31 32)(33 34 35 36 37 38 39 40)(41 42 43 44 45 46 47 48)(49 50 51 52 53 54 55 56)(57 58 59 60 61 62 63 64)
(1 63 55 16)(2 38 56 46)(3 57 49 10)(4 40 50 48)(5 59 51 12)(6 34 52 42)(7 61 53 14)(8 36 54 44)(9 18 64 32)(11 20 58 26)(13 22 60 28)(15 24 62 30)(17 37 31 45)(19 39 25 47)(21 33 27 41)(23 35 29 43)

G:=sub<Sym(64)| (1,55)(2,56)(3,49)(4,50)(5,51)(6,52)(7,53)(8,54)(9,60)(10,61)(11,62)(12,63)(13,64)(14,57)(15,58)(16,59)(17,31)(18,32)(19,25)(20,26)(21,27)(22,28)(23,29)(24,30)(33,45)(34,46)(35,47)(36,48)(37,41)(38,42)(39,43)(40,44), (1,17)(2,18)(3,19)(4,20)(5,21)(6,22)(7,23)(8,24)(9,46)(10,47)(11,48)(12,41)(13,42)(14,43)(15,44)(16,45)(25,49)(26,50)(27,51)(28,52)(29,53)(30,54)(31,55)(32,56)(33,59)(34,60)(35,61)(36,62)(37,63)(38,64)(39,57)(40,58), (1,5)(2,6)(3,7)(4,8)(9,13)(10,14)(11,15)(12,16)(17,21)(18,22)(19,23)(20,24)(25,29)(26,30)(27,31)(28,32)(33,37)(34,38)(35,39)(36,40)(41,45)(42,46)(43,47)(44,48)(49,53)(50,54)(51,55)(52,56)(57,61)(58,62)(59,63)(60,64), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64), (1,63,55,16)(2,38,56,46)(3,57,49,10)(4,40,50,48)(5,59,51,12)(6,34,52,42)(7,61,53,14)(8,36,54,44)(9,18,64,32)(11,20,58,26)(13,22,60,28)(15,24,62,30)(17,37,31,45)(19,39,25,47)(21,33,27,41)(23,35,29,43)>;

G:=Group( (1,55)(2,56)(3,49)(4,50)(5,51)(6,52)(7,53)(8,54)(9,60)(10,61)(11,62)(12,63)(13,64)(14,57)(15,58)(16,59)(17,31)(18,32)(19,25)(20,26)(21,27)(22,28)(23,29)(24,30)(33,45)(34,46)(35,47)(36,48)(37,41)(38,42)(39,43)(40,44), (1,17)(2,18)(3,19)(4,20)(5,21)(6,22)(7,23)(8,24)(9,46)(10,47)(11,48)(12,41)(13,42)(14,43)(15,44)(16,45)(25,49)(26,50)(27,51)(28,52)(29,53)(30,54)(31,55)(32,56)(33,59)(34,60)(35,61)(36,62)(37,63)(38,64)(39,57)(40,58), (1,5)(2,6)(3,7)(4,8)(9,13)(10,14)(11,15)(12,16)(17,21)(18,22)(19,23)(20,24)(25,29)(26,30)(27,31)(28,32)(33,37)(34,38)(35,39)(36,40)(41,45)(42,46)(43,47)(44,48)(49,53)(50,54)(51,55)(52,56)(57,61)(58,62)(59,63)(60,64), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64), (1,63,55,16)(2,38,56,46)(3,57,49,10)(4,40,50,48)(5,59,51,12)(6,34,52,42)(7,61,53,14)(8,36,54,44)(9,18,64,32)(11,20,58,26)(13,22,60,28)(15,24,62,30)(17,37,31,45)(19,39,25,47)(21,33,27,41)(23,35,29,43) );

G=PermutationGroup([[(1,55),(2,56),(3,49),(4,50),(5,51),(6,52),(7,53),(8,54),(9,60),(10,61),(11,62),(12,63),(13,64),(14,57),(15,58),(16,59),(17,31),(18,32),(19,25),(20,26),(21,27),(22,28),(23,29),(24,30),(33,45),(34,46),(35,47),(36,48),(37,41),(38,42),(39,43),(40,44)], [(1,17),(2,18),(3,19),(4,20),(5,21),(6,22),(7,23),(8,24),(9,46),(10,47),(11,48),(12,41),(13,42),(14,43),(15,44),(16,45),(25,49),(26,50),(27,51),(28,52),(29,53),(30,54),(31,55),(32,56),(33,59),(34,60),(35,61),(36,62),(37,63),(38,64),(39,57),(40,58)], [(1,5),(2,6),(3,7),(4,8),(9,13),(10,14),(11,15),(12,16),(17,21),(18,22),(19,23),(20,24),(25,29),(26,30),(27,31),(28,32),(33,37),(34,38),(35,39),(36,40),(41,45),(42,46),(43,47),(44,48),(49,53),(50,54),(51,55),(52,56),(57,61),(58,62),(59,63),(60,64)], [(1,2,3,4,5,6,7,8),(9,10,11,12,13,14,15,16),(17,18,19,20,21,22,23,24),(25,26,27,28,29,30,31,32),(33,34,35,36,37,38,39,40),(41,42,43,44,45,46,47,48),(49,50,51,52,53,54,55,56),(57,58,59,60,61,62,63,64)], [(1,63,55,16),(2,38,56,46),(3,57,49,10),(4,40,50,48),(5,59,51,12),(6,34,52,42),(7,61,53,14),(8,36,54,44),(9,18,64,32),(11,20,58,26),(13,22,60,28),(15,24,62,30),(17,37,31,45),(19,39,25,47),(21,33,27,41),(23,35,29,43)]])

56 conjugacy classes

class 1 2A···2G2H2I2J2K4A···4H4I4J4K4L4M···4T8A···8P8Q···8X
order12···222224···444444···48···88···8
size11···122221···122224···42···24···4

56 irreducible representations

dim111111111222
type++++++-
imageC1C2C2C2C2C4C4C4C4D4Q8C8oD4
kernelC23.29C42C22.7C42C2xC42:C2C23xC8C22xM4(2)C2xC22:C4C2xC4:C4C22xC8C2xM4(2)C22xC4C22xC4C22
# reps1411144886216

Matrix representation of C23.29C42 in GL5(F17)

10000
016000
00100
000160
000016
,
10000
016000
001600
000160
000016
,
10000
016000
001600
00010
00001
,
10000
08000
00900
0001315
00004
,
40000
00100
016000
000130
000164

G:=sub<GL(5,GF(17))| [1,0,0,0,0,0,16,0,0,0,0,0,1,0,0,0,0,0,16,0,0,0,0,0,16],[1,0,0,0,0,0,16,0,0,0,0,0,16,0,0,0,0,0,16,0,0,0,0,0,16],[1,0,0,0,0,0,16,0,0,0,0,0,16,0,0,0,0,0,1,0,0,0,0,0,1],[1,0,0,0,0,0,8,0,0,0,0,0,9,0,0,0,0,0,13,0,0,0,0,15,4],[4,0,0,0,0,0,0,16,0,0,0,1,0,0,0,0,0,0,13,16,0,0,0,0,4] >;

C23.29C42 in GAP, Magma, Sage, TeX

C_2^3._{29}C_4^2
% in TeX

G:=Group("C2^3.29C4^2");
// GroupNames label

G:=SmallGroup(128,461);
// by ID

G=gap.SmallGroup(128,461);
# by ID

G:=PCGroup([7,-2,2,2,-2,2,2,-2,112,141,232,723,172]);
// Polycyclic

G:=Group<a,b,c,d,e|a^2=b^2=c^2=e^4=1,d^4=c,a*b=b*a,e*a*e^-1=a*c=c*a,a*d=d*a,b*c=c*b,e*d*e^-1=b*d=d*b,b*e=e*b,c*d=d*c,c*e=e*c>;
// generators/relations

׿
x
:
Z
F
o
wr
Q
<